یکشنبه 30 شهریور 1399 | Sunday 20 th of September 2020 صفحه اصلی گروه الکترونیکی کامپیوتر
فهرست منابع و مراجع

·         genetic algorithms and evolution strategies, J Syst Sci 2002 ;28(4):59–71.

·         Alper Unler, Alper MuratA, discrete particle swarm optimization method for feature selection in binaryclassification problems, European Journal of Operational Research 206 (2010) 528–539.

·         Back T, Fogel DB, Michalewicz Z (eds). Handbook of Evolutionary computation, Berlin/Heidelberg: Springer, 1997.

·         Blum, Christian and Andrea Roli, “Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison,” ACM Computing Surveys, 35 (3), 268–30, 2003.

·         Bonabeau, E., Dorigo, M., Theraulaz, G., 1999. Swarm Intelligence: From Natural toArtificial Systems. Oxford Univ. Press, New York.

·         Byung-Ro Moon,Il-Seok Oh, Jin-Seon Lee, Hybrid Genetic Algorithms for Feature Selection, IEEE Transactions on pattern analysis and machine intelligence, vol. 26, no. 11, november 2004.

·         Changseok Bae, Wei-Chang Yeh, Yuk Ying Chung, Sin-Long Liu, Feature selection with Intelligent Dynamic Swarm and Rough Set, Expert Systems with Applications 37 (2010) 7026–7032.

·         Clerc, M., Kennedy, J., 2002. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6 (1), 58–73.

·         Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: Acooperative learning approach to the traveling salesman problem, IEEE Transaction on Evolutionary Computation, 1(1), 53–66.

·         Dorigo, M., Caro, G.D., 1999. Ant colony optimization: A new metaheuristic, In:Proc. Congress on Evolutionary Computing.

·         Dorigo, M., Maniezzo, V., Colorni, A., 1996. The Ant system: Optimization by acolony of cooperating agents. IEEE Trans. Syst. Man Cybernet. Part B 26 (1), 29–41.

·         Dréo, J., Pétrowski, A., Siarry, P., Taill, E., 2006. Metaheuristics For Hard Optimization. Springer, New York.

·         Duval Beatrice and Jin-Kao Hao, Advances in metaheuristics for gene selection and classification of microarray data, briefings in bioinformatics, vol 11, no 1, 127-141, 2009.

·         Gendreau, M. ,An Introduction To Tabu Search, In Handbook of metaheuristics, Glover, F. , Kochenberger, G.A. , (Eds.), Kluwer Academic publishers, Norwell, 2003.

·         Glover F. and Glover, F. , and Laguna, M. , Tabu Search, In Handbook of AppliedOptimization, Pardalos P.M. , and Resende M.G.C. , (Eds.), Oxford UniversityPress, pp. 194-208, 2002.

·         Glover F. and Laguna, M. , Tabu Search, Kluwer Academic Publishers, 1997.

·         Glover, F. ,Future paths for integer programming and links to artificial intelligence, Computers and Operations Research, 5:533-549, 1986.

·         Glover, F., 1986. Future paths for integer programming and links to artificialintelligence. Comput. Oper. Res. 13 (5), 533–549.

·         Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learning, Vol. 3. Reading, MA: Addison-Wesley, 1989.

·         Holland JH. Adaptation in Natural and Artificial Systems:An Introductory Analysis with Applications to Biology, Control,and Artificial Intelligence. Ann Arbor, MI: University ofMichigan Press, 1975.

·         Hoos H, Stutzle T. Stochastic Local Search: Foundations and Applications, San Francisco, CA: Morgan Kaufmann Publishers Inc., 2004.

·         Jensen, R., Shen, Q., 2003. Finding rough set reducts with ant colony optimization.In: Proceeding of 2003 UK Workshop Computational Intelligence, pp. 15–22.

·         Kamal Hammouchea, MoussaDiaf, PatrickSiarry, A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem, Engineering Applications of Artificial Intelligence 23 (2010) 676–688.

·         Kaveh A, Kalatjari V. Genetic algorithm for discrete sizing optimal design of trusses using the force method. Int J Numer Methods Eng 2002;55:55–72.

·         Koza, John, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press. ISBN 0-262-11170-5, 1992.

·         Maniezzo, V., Colorni, A., 1999. The ant system applied to the quadratic assignmentproblem. Knowledge Data Eng. 11 (5), 769–778.

·         Michalewicz, Z. & Fogel, D.B. , How to Solve It: Modern Heuristics. Springer, 2000.

·         Mohammad Goodarzi , Matheus P. Freitas , Richard Jensen, Ant colony optimization as a feature selection method in the QSAR modeling of anti-HIV-1 activities of 3-(3,5-dimethylbenzyl)uracil derivatives using MLR, PLS and SVM regressions, Chemometrics and Intelligent Laboratory Systems 98 (2009) 123–129.

·         Nedjah and L. M. Mourella. Swarm Intelligent Systems, Springer, 2006.

·         Pearl, J. Heuristic: Intelligent search strategies for computer problem solving new York: Addison-Wesley Publishing Company, 1984.

·         Rechenberg, Ingo, 1973, Evolutionsstrategie. Stuttgart: Holzmann-Froboog. ISBN 3772803733.

·         Sergey Subbotin and Alexey Oleynik, Ant Colony Optimization for Feature Selection Based on Operations with Crisp Sets, TCSET'2008, Lviv-Slavsko, Ukraine, February 19-23, 2008.

·         Song, M., & Gu, G. (2004). Research on particle swarm optimization: A review. InProceedings of the third international conference on machine learning andcybernetics, Shanghai.

·         Tahir, M.A., Bouridane, A., Kurugollu, F., 2007. Simultaneous feature selection and feature weighting using hybrid tabu search/K-nearest neighbor classifier. Pattern Recognition Lett. 28 (4), 438–446.

·         Tahir, M.A., Bouridane, A., Kurugollu, F., Amira, A., 2005. A novel prostate cancer classification technique using intermediate memory Tabu Search. EURASIP J. Appl. Signal Process. 14, 2241–2249.

·         Talbi, El-Ghazali. Metaheuristics: From Design to Impelementation, John Wiley and sons, 2009.

·         Yaghini, Masoud; Akhavan, Rahim, DIMMA: A Design and Implementation Methodology for Metaheuristic Algorithms - A Perspective from Software Development, International Journal of Applied Metaheuristic Computing, Vol.1, No.4, pp. 57-74, 2010.

·         Yong Wanga, Lin Li, Jun Ni a, Shuhong Huang, Feature selection using tabu search with long-term memories and probabilistic neural networks, Pattern Recognition Letters 30 (2009) 661–670.

·         Yumin Chen , Duoqian Miao, Ruizhi Wang, A rough set approach to feature selection based on ant colony optimization, Pattern Recognition Letters 31 (2010) 226–233.

·         Zhang, H., Sun, G., 2002. Feature selection using tabu search method. Pattern Recognition Lett. 35 (3), 701–711.

 

Compatability by:
آخرین به روز رسانی سایت: سه شنبه, 22 اسفند 1391 - 00:26